Skip to content
Data Science Algorithms
Home >> Data Science Algorithms
1.1 Classification
Logistic Regression
Support Vector Machines (SVM)
Decision Trees
Random Forest
K-Nearest Neighbors (KNN)
Naive Bayes
Gaussian Naive Bayes
Multinomial Naive Bayes
Bernoulli Naive Bayes
XGBoost
LightGBM
CatBoost
AdaBoost
1.2 Regression
Linear Regression
Polynomial Regression
Ridge Regression (L2)
Lasso Regression (L1)
Elastic Net
Decision Tree Regression
Random Forest Regression
Support Vector Regression (SVR)
Gradient Boosting Regression
2.1 Clustering
K-Means
Hierarchical Clustering
DBSCAN
Mean Shift
Gaussian Mixture Models
Spectral Clustering
OPTICS
2.2 Dimensionality Reduction
Principal Component Analysis (PCA)
t-SNE
UMAP
Linear Discriminant Analysis (LDA)
Factor Analysis
Autoencoders
Non-negative Matrix Factorization (NMF)
2.3 Association Rule Learning
3.1 Neural Networks
Feedforward Neural Networks
Convolutional Neural Networks (CNN)
Recurrent Neural Networks (RNN)
Transformers
Graph Neural Networks
Generative Adversarial Networks (GANs)
3.2 Deep Learning Architectures
ResNet
VGG
BERT
GPT
U-Net
Inception
EfficientNet
4.1 Value-Based Methods
Q-Learning
Deep Q-Network (DQN)
SARSA
4.2 Policy-Based Methods
Policy Gradient
Actor-Critic
Proximal Policy Optimization (PPO)
5.1 Classical Methods
ARIMA
SARIMA
Exponential Smoothing
Simple
Double
Triple (Holt-Winters)
Prophet
5.2 Modern Approaches
LSTM for Time Series
CNN for Time Series
Temporal Convolutional Networks
Neural Prophet
6.1 Text Processing
TF-IDF
Word2Vec
GloVe
FastText
BERT Embeddings
Doc2Vec
6.2 Topic Modeling
Latent Dirichlet Allocation (LDA)
Non-negative Matrix Factorization (NMF)
Latent Semantic Analysis (LSA)
7.1 Bagging
Random Forest
Extra Trees
Bagging Classifier/Regressor
7.2 Boosting
AdaBoost
Gradient Boosting
XGBoost
LightGBM
CatBoost
8.1 Gradient-Based
Gradient Descent
Stochastic Gradient Descent
Adam
RMSprop
AdaGrad
8.2 Nature-Inspired
Genetic Algorithms
Particle Swarm Optimization
Ant Colony Optimization
Simulated Annealing
Data Science Algorithms Articles
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it. Ok Privacy Policy