Advanced Performance Analysis and Model Interpretability

1. Advanced Performance Analysis

1.1 Statistical Analysis Methods

  • Hypothesis Testing

Statistical methods to evaluate model performance claims and comparisons.

Techniques:

  • Statistical Tests
  • McNemar’s test
  • Wilcoxon signed-rank
  • Student’s t-test
  • ANOVA
  • Confidence Intervals
  • Bootstrap estimates
  • Cross-validation intervals
  • Prediction intervals
  • Error bounds
  • Effect Size Analysis
  • Cohen’s d
  • Odds ratio
  • Risk ratio
  • Area under curve differences
  • Error Analysis

Components:

  • Error Decomposition
  • Bias analysis
  • Variance analysis
  • Irreducible error
  • Model complexity impact
  • Error Distribution
  • Error patterns
  • Outlier impact
  • Residual analysis
  • Heteroscedasticity
  • Failure Mode Analysis
  • Error categorization
  • Root cause analysis
  • Systematic errors
  • Edge cases

1.2 Advanced Metrics

  • Specialized Performance Metrics

  • Ranking Metrics
  • Normalized DCG
  • Mean reciprocal rank
  • Precision at k
  • Average precision
  • Probabilistic Metrics
  • Log loss
  • Brier score
  • Calibration metrics
  • Proper scoring rules
  • Custom Metrics
  • Business-specific KPIs
  • Domain-specific measures
  • Cost-sensitive metrics
  • Time-weighted metrics
  • Multi-Objective Evaluation

Components:

  • Trade-off Analysis
  • Pareto efficiency
  • Multi-criteria optimization
  • Weighted combinations
  • Constraint satisfaction
  • Fairness Metrics
  • Demographic parity
  • Equal opportunity
  • Disparate impact
  • Individual fairness

2. Model Interpretability

2.1 Global Interpretability Methods

  • Feature Importance

Techniques:

  • Permutation Importance
  • Random shuffling
  • Feature ranking
  • Stability analysis
  • Interaction effects
  • SHAP (SHapley Additive exPlanations)
  • Game theory approach
  • Feature attribution
  • Global importance
  • Interaction values
  • Model-Specific Methods
  • Random forest importance
  • Linear model coefficients
  • Neural network weights
  • Decision tree splits
  • Partial Dependence

Showing how features affect predictions while accounting for other features.

Components:

  • Partial Dependence Plots
  • Feature effects
  • Interaction visualization
  • Marginal effects
  • Non-linear relationships
  • ICE (Individual Conditional Expectation)
  • Individual predictions
  • Feature impacts
  • Local behavior
  • Instance analysis

2.2 Local Interpretability Methods

  • LIME (Local Interpretable Model-agnostic Explanations)

Explaining individual predictions by approximating the model locally.

Characteristics:

  • Local Approximation
  • Surrogate models
  • Local fidelity
  • Interpretable features
  • Instance explanation
  • Applications
  • Text classification
  • Image recognition
  • Tabular data
  • Model debugging
  • Limitations
  • Stability issues
  • Feature selection
  • Kernel choice
  • Sampling strategy
  • Counterfactual Explanations

Generating alternative scenarios that would change the model’s prediction.

Components:

  • Generation Methods
  • Optimization-based
  • Genetic algorithms
  • Gradient-based
  • Rule-based
  • Properties
  • Minimal changes
  • Feasibility
  • Diversity
  • Actionability
  • Applications
  • Decision support
  • Customer feedback
  • Regulatory compliance
  • Model improvement

2.3 Visualization Techniques

  • Decision Boundaries

Components:

  • Visualization Methods
  • 2D projections
  • Decision surfaces
  • Boundary plots
  • Region analysis
  • Interactive Tools
  • Parameter exploration
  • Feature interaction
  • Instance inspection
  • Threshold adjustment
  • Attribution Visualization

Techniques:

  • Saliency Maps
  • Gradient-based
  • Attention maps
  • Feature attribution
  • Class activation
  • Feature Interaction
  • Dependency graphs
  • Interaction strength
  • Network visualization
  • Hierarchy plots

2.4 Model-Specific Interpretability

  • Tree-Based Models

Methods:

  • Tree Visualization
  • Path highlighting
  • Node importance
  • Split criteria
  • Leaf analysis
  • Rule Extraction
  • Decision paths
  • Rule sets
  • Condition importance
  • Coverage analysis
  • Neural Networks

Techniques:

  • Layer Visualization
  • Activation patterns
  • Filter visualization
  • Feature maps
  • Attention weights
  • Network Analysis
  • Weight analysis
  • Neuron behavior
  • Path importance
  • Architecture impact

For more information on various data science algorithms, please visit Data Science Algorithms.